The Synthesis and Reactions of Some Cyclopentadienylplatinum Complexes. Crystal Structure of $[Pt_2\{\mu-C(Ph)C(Ph)C(O)\}(\eta-C_5H_5)_2]$ † Neil M. Boag, Robin J. Goodfellow, Michael Green, Bernd Hessner, Judith A. K. Howard, and F. Gordon A. Stone Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 1TS Treatment of di- μ -chloro-dichlorobis(η -ethylene)diplatinum with Mg(C₅H₅)₂ affords the compounds [Pt(η -C₂H₄)(σ -C₅H₅)(η -C₅H₅)] and [Pt₂(μ -C₁₀H₁₀)(η -C₅H₅)₂]. Reaction between [NBuⁿ₄]₂[Pt₂Cl₄(CO)₂] and Mg(C₅H₅)₂ affords [Pt₂(CO)₂(η -C₅H₅)₂] in good yield, as well as the compound [Pt(CO)(σ -C₅H₅)(η -C₅H₅)]. Protonation of [Pt(η -C₂H₄)(σ -C₅H₅)(η -C₅H₅)] yields the salt [Pt(η -C₂H₄)(η ²-C₅H₆)(η -C₅H₅)] [BF₄]. Reaction of [Pt(η -C₂H₄)(σ -C₅H₅)(η -C₅H₅)] with PhC≡CPh affords (η -cyclopentadienyl)(σ : 2—3- η -2,3-diphenylbicyclo[2.2.1]hepta-2,5-dien-7-yl) platinum. The compound [Pt₂(CO)₂(η -C₅H₅)₂] on treatment with PhC≡CPh in the presence of Me₃NO gives [Pt₂{ μ -C(Ph)C(Ph)C(O)}(η -C₅H₅)₂], and on similar treatment with Bu'C≡CBu' and Me₃NO affords [Pt₂(μ -Bu'C₂Bu')(η -C₅H₅)₂]. The complex [Pt₂{ μ -C(Ph)C(Ph)C(O)}(η -C₅H₅)₂] was structurally characterised by a single crystal X-ray diffraction study. The metal—metal bond [Pt-Pt 2.590(1) Å] is bridged by the C(Ph)=C(Ph)-C(O) ligand, in such a manner that the terminal carbon atoms are each σ -bonded to one platinum centre, while the C(Ph)=C(Ph) fragment is η ²-co-ordinated to the other. Both metal atoms carry C₅H₅ ligands, but one is asymmetrically bound. The n.m.r. data (¹H, ³¹C-{¹H}, and ¹¹5Pt-{¹H}) for the new compounds are reported and discussed, and this information used to suggest mechanisms for the dynamic behaviour of [Pt(η -C₂H₄)(σ -C₅H₅)], [Pt₂(CO)₂(η -C₅H₅)₂], and [Pt(η -C₂H₄)(η ²-C₅H₆)(η -C₅H₅)]⁺. The chemistry of the cyclopentadienyl derivatives of the Group 8 metals is highly developed with the exception of that of platinum. At an early stage in the exploitation of cyclopentadienylmetal chemistry, Fischer et al. isolated the potentially interesting compound $[Pt_2(CO)_2(\eta-C_5H_5)_2]$ but in very low yield (ca. 6%). They also noted the formation of a dinuclear species in which a 1,3-diene ligand apparently bridged two platinum atoms. Evidently further synthetic and structural studies in this area were worthwhile and we were led to using bis(cyclopentadienyl)magnesium as a reagent for preparing cyclopentadienylplatinum compounds. ## Results and Discussion Treatment of a tetrahydrofuran (thf) solution of $[Pt_2(\mu-Cl)_2-Cl_2(\eta-C_2H_4)_2]^6$ with bis(cyclopentadienyl)magnesium at 0 °C affords two platinum complexes, (1) and (2), separable by column chromatography. Compound (1), obtained in good yield (48%), was characterised by microanalysis and by mass and n.m.r. spectroscopy as $[Pt(\eta-C_2H_4)(\sigma-C_5H_5)(\eta-C_5H_5)]$, a compound in which C_5H_5 groups are both σ and η^5 co-ordinated to platinum. Variable-temperature ¹H and ¹³C-{¹H} n.m.r. studies revealed that (1) undergoes dynamic behaviour in solution, consistent with two processes taking place; the limiting low-temperature spectra being observed at -65 °C. The two mechanisms (Scheme 1) which account for the data involve rotation of the C_2H_4 ligand about an axis through the platinum atom and perpendicular to the C=C bond $[\Delta G^{\ddagger} ca. 56 \text{ kJ mol}^{-1} \text{ for } T_c = 294 \text{ K (ref. 7)}]$, and movement of the metal atom around the σ -bonded C_5H_5 ligand via a succession of [1,5]-sigmatropic shifts. That the Supplementary data available (No. SUP 23721, 22 pp.): observed and calculated structure factors, hydrogen atom co-ordinates, thermal parameters. See Instructions for Authors, Section 4.0, J. Chem. Soc., Dalton Trans., 1983, Issue 3, p. xvii. ethylene ligand in (1) sits perpendicular to the plane defined by C^1 , Pt, and the centroid of the η^5 - C_5H_5 ring (Scheme 1) is shown by the ${}^1H^{-1}H$ coupling constants 8 derived from the low-temperature 1H spectrum, and the equivalence of the signals for the ${}^{13}C$ nuclei of the C_2H_4 group at low temperature. After 3 h at 80 °C, a benzene solution of (1) showed three additional ¹⁹⁵Pt resonances at $\delta - 1$ 066, -1 092, and -2 017 p.p.m. The last peak is attributable to the diplatinum compound (2), discussed below. The relationship between the signal of (1) ($\delta - 963$) and those at -1 066 and -1 092 p.p.m. closely parallels that observed (see below) between the ¹⁹⁵Pt n.m.r. shifts for [Pt(CO)(σ -C₅H₅)(η -C₅H₅)] (3) and two vinyl isomers with which it equilibrates. Hence we suggest that the resonances which appear at $\delta - 1$ 066 and -1 092 when benzene solutions of (1) are warmed are also due to vinyl-platinum species (Scheme 1), formed by [1,5]-H-shift processes. Compound (2), formed in the reaction between $[Pt_2(\mu-Cl)_2-Cl_2(\eta-C_2H_4)_2]$ and $Mg(C_5H_5)_2$, was identified (analysis, mass, and n.m.r. spectroscopy) as the previously observed dienebridged diplatinum complex $[Pt_2(\mu-C_{10}H_{10})(\eta-C_5H_5)_2]^{3,4}$ The ¹H and ¹³C-{¹H} n.m.r. data indicated that (2) existed as equal amounts of the *exo* and *endo* isomers which differ only in the configuration of the C_5H_5 substituent on the $\mu-C_5H_5$ ligand. [†] μ -[n^2 -1,2-Diphenyl-3-oxopropene-1,3-diyl- $C^{1,3}(Pt^1)C^{1,2}(Pt^2)$]-bis-(η -cyclopentadienylplatinum) (Pt-Pt). (3) The reaction between [NBuⁿ₄]₂[Pt₂Cl₄(CO)₂] ⁹ and Mg-(C₅H₅)₂ was next examined, and when carried out in thf at 0 °C afforded a mixture of $[Pt(CO)(\sigma-C_5H_5)(\eta-C_5H_5)]$ (3) (ca. 8%) and $[Pt_2(CO)_2(\eta-C_5H_5)_2]$ (4) (ca. 50%). The latter complex has previously only been obtained in low yield.² Compound (3) is structurally related to (1) and shows (n.m.r. data) a similar movement of the metal atom about the σ -bonded C_5H_5 ligand. A high yield (70%) synthesis of (3) is possible by treating a thf solution of (1) with CO (5 \times 10⁶ Pa, 25 °C). (3a) (3b) By n.m.r. spectroscopy (195Pt-{1H}, 1H, and selective decoupling experiments), compound (3) was observed to slowly convert to its vinyl isomer (3a) in solution, which in turn equilibrates with the other vinyl isomer (3b) [cf. the behaviour of SiCl₂Me(C₅H₅) ¹⁰]. From considerations discussed elsewhere, 11-13 coupling between 195Pt nuclei and the olefinic protons of (3a) and (3b) can be taken to have positive sign. Thence ¹H-{¹H} selective decoupling experiments showed that the coupling between 195Pt and the aliphatic protons was positive in (3a) but negative in (3b). These signs support the assignments of the structures of these vinyl isomers which could form from (3) by successive [1,5]-H-shifts. As expected, 14 (3a) and (3b) have very similar ¹⁹⁵Pt chemical shifts ($\delta - 1$ 220 and -1 254 p.p.m., respectively) which are not far removed from that $(\delta - 1\ 038)$ for (3). The ¹H n.m.r. spectrum of compound (4) has been previously reported,15 and the data for our product were in agreement. The ¹³C-{¹H} n.m.r. spectrum of (4) showed a signal for the η-C₅H₅ ligands at δ 91.9 p.p.m. with apparently equal coupling (12 Hz) to both ¹⁹⁵Pt sites. The efficient synthesis of (4) from [NBuⁿ₄]₂[Pt₂Cl₄(CO)₂] made it possible to prepare samples with ¹³C enrichment (ca. 75%) of the CO ligands. The ¹³C-{¹H} and ¹⁹⁵Pt-{¹H} spectra of the enriched material closely resembled those observed for enriched samples of the dianions $[Pt_2X_4(CO)_2]^{2-}$ (X = Cl or Br).9 Thus, the room-temperature spectra showed prominent broad features at ca. $\pm \frac{1}{4}[{}^{1}J(PtC)]$ consistent with intramolecular CO site-exchange, which presumably proceeds via a CO bridged intermediate (Scheme 2), in a similar manner to that suggested 9 for the anions $[Pt_2X_4(CO)_2]^{2-}$. To obtain well resolved spectra, measurements were made at ca. -80 °C, and the various parameters, including J(PtPt), evaluated (Experimental section) as described elsewhere. Splitting of the inner lines as a consequence of the term ${}^3J({}^{13}C{}^{13}C)$ was not resolved (<10 Hz) so this coupling was assumed to be zero. Interestingly, the CO carbon isotope effect on $\delta(^{195}\text{Pt})$ is larger than in Scheme 3. $[Pt_2X_4(CO)_2]^{2-}$, viz. 1.25 compared with 0.8 p.p.m. As stated above, the C₂H₄ ligand in (1) can be displaced by CO. It was also found that (1) could be protonated (HBF₄propionic anhydride mixture) to give the salt $[Pt(\eta-C_2H_4)(\eta^2 C_5H_6(\eta-C_5H_5)$ [BF₄] (5). The n.m.r. data for this salt showed that the cation undergoes dynamic behaviour in solution. Evidently both the C₂H₄ and the C₅H₆ groups rotate about axes through the platinum atom and the midpoints of the η^2 bonded C=C group (Scheme 3). There was no evidence for the platinum atom 'switching' back and forth between the two olefinic co-ordination sites of the C₅H₆ ligand. On cooling to -75 °C the dynamic processes were frozen out, and the Table 1. Internuclear distances (Å) and angles (°) for $[Pt_2\{\mu-C(Ph)C(Ph)C(O)\}(\eta-C_5H_5)_2]$ (7), with estimated standard deviations in parentheses | (a) Distances * | | | | | | | | |--------------------------------|----------|---------------------|----------------|--------------|---------|----------------|---------| | Pt(1)-Pt(2) | 2.590(1) | Pt(1)-C(08) | 2.28(2) | Pt(2)-C(01) | 2.30(3) | C(1)-C(2) | 1.46(4) | | Pt(1)-C(1) | 2.03(2) | Pt(1)-C(09) | 2.29(2) | Pt(2)-C(02) | 2.20(3) | C(2)-C(3) | 1.53(4) | | Pt(1)-C(2) | 2.15(3) | Pt(1)-C(010) | 2.28(2) | Pt(2)-C(03) | 2.24(2) | C(1)-C(11) | 1.47(3) | | $Pt(1) \cdot \cdot \cdot C(3)$ | 2.61(3) | Pt(2)-C(1) | 2.04(3) | Pt(2)-C(04) | 2.37(2) | C(3)-O(3) | 1.17(3) | | Pt(1)-C(06) | 2.28(3) | Pt(2)-C(3) | 2.02(3) | Pt(2)-C(05) | 2.41(2) | C(2)-C(21) | 1.48(3) | | Pt(1)-C(07) | 2.28(3) | $Pt(2) \cdots C(2)$ | 2.63(3) | | | | | | (b) Angles | | | | | | | | | Pt(1)-C(1)-Pt | (2) | 79.0(7) | Pt(1)-C(1)- | C(11) 128(1 |) C(| 2)-C(3)-O(3) | 130(3) | | Pt(1)-C(2)-Pt | (2) | 64.6(6) | C(11)-C(1) | C(2) 131(2 | 2) C(| 2)-C(3)-Pt(2) | 95(1) | | Pt(1)-C(3)-Pt | (2) | 66.6(7) | C(21)-C(2)- | C(1) 129(2 | 2) C(| 2)-C(1)-Pt(1) | 74(1) | | $Pt(1) \cdots C(3)$ | -O(3) 14 | 40(2) | C(1)-C(2)-C(2) | C(3) 100(2) | 2) C(| 21)-C(2)-Pt(2) | 173(1) | | Pt(2)-C(3)-O(| (3) 13 | 35(2) | C(3)-C(2)-C(3) | C(21) 129(2) | 2) C(| 21)-C(2)-Pt(1) | 122(1) | ^{*} C-C distances for C₅H₅ and C₆H₅ rings were constrained to 1.42 and 1.39 Å, respectively. Scheme 4. (i) PhC_2Ph , $-C_2H_4$ resulting spectrum suggested the presence of two isomers of relative proportions 1:5 [(5a) and (5b), respectively, Scheme 3]. In the intermediate temperature range, a coalescence temperature of -40 °C was observed for ethylene rotation (ΔG^{\dagger}_{Tc} ca. 49 kJ mol⁻¹), and an approximate coalescence temperature of -50 °C for η^2 -C₅H₆ rotation. It should be noted (Scheme 3), however, that an envelope flip (endo exo) of the CH₂ unit of the C₅H₆ ligand, which would produce the corresponding enantiomers, cannot be ruled out as an alternative to C₅H₆ rotation. Reactions of (1) and (4) with PhC=CPh were also investi- gated. At 70 °C, (1) affords compound (6) (Scheme 4), a product corresponding to a formal $(4 + 2) \pi$ addition of the alkyne to the platinum substituted C5H5 ring. The illustrated structure is proposed on the basis of the ¹H and ¹³C-{¹H} n.m.r. data. Formation of (6) is related to the earlier observed reactions between nickelocene and the alkynes C2(CO2Me)2 16 and CF₃C₂CF₃ 17 which afford products with similar structures. However, PhC₂Ph is not a reactive dienophile, and it is unlikely that a platinum substituent could activate a cyclopentadiene ring so that it would undergo a Diels-Alder reaction with diphenylacetylene. The pathway shown in Scheme 4 for the formation of (6) thus seems more likely. An initial displacement of C₂H₄ by PhC₂Ph could be followed by 'insertion' of the alkyne into the C-Pt σ bond to give the 18electron vinyl species (A). This intermediate could then undergo an intramolecular insertion reaction to give (B), which on collapsing would yield the 18-electron product (6). The diplatinum complex (4) does not react thermally with PhC₂Ph. However, treatment of (4) with PhC₂Ph in the presence of Me₃NO affords a crystalline product (7), the i.r. spectrum of which showed a strong band at 1 681 cm⁻¹, suggestive of a ketonic CO group. The structural identity of (7) was established by a single-crystal X-ray diffraction study, data from which are summarised in Table 1. The molecule is shown in the Figure, which also illustrates the atom-numbering scheme. Compound (7) is a diplatinum species. The Pt-Pt separation [2.590(1) Å] corresponds to that expected for a single bond, and may be compared with those found in [Pt₃(µ-CO)₃-{P(cyclo- $C_6H_{11})_3$ }₃] [2.654(2) Å], ¹⁸ [Pt₃(μ -CNBu^t)₃(CNBu^t)₃] [2.632(2) Å], 19 [Pt₃(μ -C(OMe)C₆H₄Me-4)₃(CO)₃] [2.624(1) Å],²⁰ [Pt₂{ μ -C(CF₃)₂O}(cod)₂] (cod = cyclo-octa-1,5-diene) [2.585(1) Å],²¹ and compound (2) [2.581(4) Å]. Each platinum carries an n⁵-cyclopentadienyl ligand. The metal-metal bond is spanned by a C(Ph)C(Ph)C(O) group derived from one CO and one PhC₂Ph molecule. The bridging organic group is η²bonded to Pt(1) via the olefinic link C(1)-C(2) [1.46(4) Å], and is σ -bonded to Pt(2) via the ketonic carbon C(3) and the olefinic 'carbon C(1). The distances between C(1), C(2), and C(3) and the platinum atoms to which they are bonded are all within the range [1.99(3)-2.15(2) Å] found previously for carbon-platinum σ bonds.²² However, the Pt(1) · · · C(3) and the Pt(2) · · · C(2) distances in (7) (Table 1) are non-bonding. It is interesting to relate the bridging C(Ph)C(Ph)C(O) group in (7) with the bridging C(Ph)C(O)C(Ph) ligand in the compound [Pt₂{µ-C(Ph)C(O)C(Ph)}(CNBu^t)₄].²³ However, in the latter there is no Pt-Pt bond, and the bonding mode of Figure. Molecular structure of $[Pt_2\{\mu-C(Ph)C(Ph)C(O)\}(\eta-C_5H_5)_2]$ (7) with the atom-numbering scheme the C_3 bridge is very different. More relevant to (7) is the compound $[W_2\{\mu-C(CO_2Me)C(CO_2Me)C(O)\}(CO)_4(\eta-C_5H_5)_2]$, which also contains a metallacyclobutene ring.²⁴ Although both cyclopentadienyl ligands in (7) are η^5 -bonded to the platinum atoms there is an indication of asymmetry in the attachment of the C_5H_5 group to Pt(2). Shorter Pt-C separations are observed for the ring-carbon atoms C(02) and C(03) lying more nearly *trans* to the Pt-Pt vector, and longer distances for those [C(01), C(04), and C(05)] more *transoid* to the C_3 ligand system. A complex related to (7), and to the ditungsten species mentioned above, is the diruthenium compound [Ru₂{μ-σ:η³- $C(O)C(Ph)C(Ph)(\mu-CO)(CO)(\eta-C_5H_5)_2$]. In the latter the C(Ph)C(Ph)C(O) fragment adopts a different bonding mode in bridging the two metal centres. It was proposed 25 that in forming the diruthenium compound by u.v. irradiation of $[Ru_2(CO)_4(\eta-C_5H_5)_2]$ in the presence of PhC=CPh, homolytic fission of the Ru-Ru bond occurs, and that the metallacyclobutenone ring is formed at one metal centre before interaction occurs with a second Ru(CO)₂(η-C₅H₅) moiety. It is unlikely that a similar sequence of reactions occurs in the formation of (7). Treatment of (3) with Me₃NO probably leads to loss of one co-ordinated CO as CO₂, and formation of the unsaturated species (C) (Scheme 5), related to [Co₂(CO)₇]. As in the reactions of [Co₂(CO)₈] with alkynes, a transversely bridged complex (D) would be expected to form with PhC=CPh. In order to form the platinacyclobutenone ring system it would be necessary for one C_5H_5 ligand to slip to an η^3 -bonding mode so as to accommodate a change from bridging to terminal mode for the CO group. A carbonyl 'insertion' reaction would then afford (7) directly. It follows that the whole process takes place at a dimetal centre. This proposal is supported by the observation that reaction of (3) with Me₃NO in the presence of Bu^tC \equiv CBu^t gives the diplatinum compound (8), isostructural with the well known dinickel complexes $[Ni_2(\mu-RC_2R)(\eta-C_3H_5)_2]$ (R = alkyl or aryl).²⁶ Thus it is possible that (8) is formed by a competitive reaction pathway available to an intermediate isostructural with (D) (Scheme 5), which simply extrudes CO to establish a Pt-Pt bond. ## **Experimental** The ¹H, ¹³C-{¹H}, ³¹P-{¹H}, and ¹⁹⁵Pt-{¹H}, n.m.r. spectra were measured in [²H₁]chloroform, unless otherwise stated, on JEOL PS-100, FX 90Q, or FX 200 spectrometers, as appro- Scheme 5. (i) $+RC_2R$ (R = Ph or Bu^t); (ii) -CO priate. Data given are for room-temperature measurements unless otherwise indicated and coupling constants are in Hz. Carbon-13 chemical shifts are relative to SiMe₄ with positive values to high frequency of the reference. The ¹⁹⁵Pt shifts are measured to high frequency of $\Xi(^{195}Pt)=21.4$ MHz. Tris-(acetylacetonato)chromium(III) was added to reduce ¹³C relaxation times. All molecular weights were obtained by mass spectroscopy using an A.E.I. MS 902 instrument, and i.r. spectra were recorded on a Perkin-Elmer 257 spectrophotometer. All reactions were carried out in Schlenk tubes under an atmosphere of dry oxygen-free nitrogen, using freshly distilled solvents. Light petroleum refers to that fraction of b.p. 30—40 °C. Reaction of Di-u-chloro-dichlorobis(n-ethylene)diplatinum with Bis(cyclopentadienyl)magnesium.—A solution of Mg- $(C_5H_5)_2$ (0.55 g, 3.57 mmol) in thf (5 cm³) was added dropwise (10 min) with stirring (0 °C) to an ethylene-saturated thf (20 cm³) solution of $[Pt_2(\mu-Cl)_2Cl_2(\eta-C_2H_4)_2]$ (1.0 g, 1.7 mmol). After 2 h, solid alumina (ca. 10 g) was added, and the solvent removed in vacuo. The residue was transferred to an aluminapacked chromatography column (10 × 2.5 cm), charged with light petroleum. Elution with light petroleum-diethyl ether (20:1) afforded an orange band. Removal of solvent gave orange crystals of $[Pt(\eta-C_2H_4)(\sigma-C_5H_5)(\eta-C_5H_5)]$ (1) (0.58 g, 48%) (Found: C, 41.1; H, 4.1%; M, 353. $C_{12}H_{14}Pt$ requires C, 40.8; H, 4.0%; M, 353); m.p. 28 °C. N.m.r.: 1 H (at -65 °C in [2H₆]acetone), δ 6.48 (m, 2 H, CH), 6.15 [m, 2 H, CH, J(PtH) 19], 5.31 [s, 5 H, C_5H_5 , J(PtH) 14], 2.73 [s, 1 H, CH, J(PtH) 165], 3.36 [2 H, J(PtH) 84] and 2.14 [2 H, J(PtH) 70] $\{[AX]_2 \text{ spin system, } C_2H_4, J(AA') \simeq J(XX') 7.2, J(AX) 11.4,$ and J(AX') 1.3}; ¹H (at 70 °C in [²H₆]benzene), δ 5.79 [s, 5 H, C_5H_5 , J(PtH) 41], 4.79 [s, 5 H, C_5H_5 , J(PtH) 14], and 2.63 [s, 4 H, C_2H_4 , J(PtH) 77]; $^{13}C_5H_1$ (at -80 °C in [$^{2}H_2$]dichloromethane- CH_2Cl_2), δ 143.5 [CH, J(PtC) 51], 122.1 [CH, J(PtC) 32], 94.5 [C_5H_5 , J(PtC) 17], 32.2 [C_2H_4 , J(PtC) 300], and 27.9 p.p.m. [CHPt, J(PtC) 686]; $^{13}C_5H_1$ ([$^{2}H_6$]benzene), δ 94.5 [C_5H_5 , J(PtC) 16] and 32.0 p.p.m. [C_2H_4 , J(PtC) 304]; $^{195}Pt_5H_1$ ([$^{2}H_6$]benzene), δ -963 p.p.m. Further elution of the chromatography column with light petroleum–diethyl ether (3:2) afforded the green crystalline compound $[Pt_2(\mu-C_{10}H_{10})(\eta-C_5H_5)_2]$ (2) 3 (0.32 g, 34%) (Found: C, 37.3; H, 3.5%; M, 650. Calc. for $C_{20}H_{20}Pt_2$: C, 36.9; H, 3.1%; M, 650). N.m.r.: ¹H ([2H_6]benzene), isomer (2a), δ 6.52 [m, 1 H, H², $J(H^2H^4)$ 1, $J(H^2H^{1,1})$ 1.5, $J(H^2H^3)$ 5], 6.36 [m, 1 H, H³, $J(H^3H^4)$ 2, $J(H^3H^2)$ 5, $J(H^3H^{1,1'})$ 1.5], 5.97 (br, m, 1 H, H⁴), 5.65 [s, 5 H, C_5H_5 , J(PtH) 14, J(PtH) 9], 4.78 [part of (AB)2 subspectrum, 2 H, H6 and H6 or H7 and H7, J(PtH) 85], 4.11 [s, 1 H, H⁵, J(PtH) 41], 3.30 [part of (AB)₂ subspectrum, 2 H, H⁷ and H^{7'} or H⁶ and H^{6'}, J(PtH) 83], and 2.76 (m, 2 H, H¹ and H¹); isomer (2b) 6.47 [m, 1 H, H³, $J(H^3H^4)$ 2, $J(H^3H^2)$ 5.5, $J(H^3H^1)$ 2], 6.25 [m, 1 H, H², $J(H^2H^4)$ 1, $J(H^2H^1)$ 1.5, $J(H^2H^3)$ 5.5], 6.21 (br, m, 1 H, H⁴), 5.66 [s, 5 H, C₅H₅, J(PtH) 14, J(PtH) 9], 4.69 [part of (AB)₂ subspectrum, 2 H, H⁶ and H⁶ or H⁷ and H⁷ J(PtH) 85], 4.07 [s, 1 H, H⁵, J(PtH) 41], 3.90 [part of (AB)₂ subspectrum, 2 H, H^7 and $H^{7'}$ or H^6 and $H^{6'}$, J(PtH) 83], and 2.78 (m, 2 H, H^1 and $H^{1'}$); ${}^{13}C-\{{}^{1}H\}$, isomer (2a), δ 151.8 [C⁵, J(PtC)73], 133.5, 130.4, 124.3 (C^2 , C^3 , C^4), 90.7 [C_5H_5 , J(PtC) 13, J(PtC) 7], 58.7 [C^6 , J(PtC) 34], 48.0 [C^7 and C^7 or C^8 and $C^{8'}$, J(PtC) 398], 40.9 (C^{1}), and 40.5 p.p.m. [C^{8} and $C^{8'}$ or C^{7} and $C^{7'}$, J(PtC) 190, ${}^{2}J(PtC)$ 66]; isomer (2b), δ 154.7 $[C^5, J(PtC)]$ 76], 132.5, 132.2, 124.9 (C^2, C^3, C^4) , 90.7 $[C_5H_5]$ J(PtC) 13, J(PtC) 7], 58.1 [C⁶, J(PtC) 32], 48.9 [C⁷ and C⁷ C^8 and $C^{8'}$, J(PtC) 398], 40.6 (C1), and 40.1 p.p.m. [C8 and $C^{8'}$ or C^{7} and $C^{7'}$, J(PtC) 191, J(PtC) 66]; ${}^{195}Pt-{}^{1}H$ } ([${}^{2}H_{6}$]benzene), isomer (2a) and isomer (2b), $\delta - 2016$ p.p.m. Reaction of [NBuⁿ₄]₂[Pt₂Cl₄(CO)₂] with Mg(C₅H₅)₂.—A solution of Mg(C₅H₅)₂ (1 mmol) in thf (10 cm³) was added dropwise with stirring (0 °C) to a suspension of [NBuⁿ₄]₂-[Pt₂Cl₄(CO)₂] (1.07 g, 1 mmol) in the same solvent (100 cm³). The yellow solid slowly dissolved to give a dark red solution. After 1 h, volatile material was removed in vacuo, and the residue extracted with hexane. Reduction of the volume of the extracts to ca. 5 cm³ and cooling gave red needles of [Pt₂-(CO)₂(η-C₅H₅)₂] (4)² (0.23 g), see below. The supernatant liquid was chromatographed on alumina (0 °C), using hexane as eluant, affording a yellow oil, [Pt(CO)(σ-C₅H₅)(η-C₅H₅)] (3) (0.03 g, 8%); v_{max.} (CO) 2 035vs and 1 985vw cm⁻¹ (hexane). N.m.r.: ¹H (at −70 °C in [²H₆]acetone), δ 6.55 (m, 2 H, CH), 6.25 [m, 2 H, CH, J(PtH) 20], 5.96 [s, 5 H, C₅H₅, J(PtH) 13], and 5.24 [s, br, 1 H, σ-PtCH, J(PtC) 198]; ¹H (at 60 °C in [²H₆]acetone), δ 6.11 [s, 5 H, J(PtH) 13] and 5.71 [s, 5 H, J(PtH) 44]; ¹³C-{¹H} (at -70 °C in [²H₆]acetone), δ 162.1 [CO, J(PtC) 2 494], 143.8 [CH, J(PtC) 45], 123.0 [CH, J(PtC) 34], 94.8 [C₅H₅, J(PtC) 11], and 12.1 p.p.m. [PtCH, J(PtC) 614]; ¹⁹⁵Pt-{¹H} (in [²H₆]benzene), δ -1 038 p.p.m. A [${}^{2}H_{6}$]benzene solution of (3) slowly converted into isomer (3a) {n.m.r.: ${}^{1}H$, δ 6.69 [m, H 3 , J(PtH) 5], 6.54 [m, H 2 , J(PtH) 60], 6.53 [m, H 4 , J(PtH) 18] [with spin decoupling of CH $_{2}$ groups, couplings were found as J(H $^{2}H^{3}$) 2.0, J(H $^{2}H^{4}$) 1.1, and J(H $^{3}H^{4}$) 5.4], 3.03 [q, 2 H, CH $_{2}$, J(HH) all ca. 1.3, J(PtH) 9], and 5.30 [s, 5 H, C $_{5}H_{5}$, J(PtH) 13]; 195 Pt-{ ^{1}H }, δ -1 220 p.p.m.} and isomer (3b) {n.m.r.: ^{1}H , δ 6.69 [m, H 3 , J(PtH) 22], 6.41 [m, H 4 , J(PtH) 6], 6.34 [m, H 1 , J(PtH) 54] [with spin decoupling of CH $_{2}$ groups, couplings were found as J(H $^{1}H^{3}$) 1.1, J(H $^{1}H^{4}$) 2.0, and J(H $^{3}H^{4}$) 5.1], 3.09 [q, 2 H, CH $_{2}$, J(HH) all ca. 1.6, J(PtH) 15], and 5.36 [s, 5 H, C $_{5}H_{5}$, J(PtH) 13]; 195 Pt-{ ^{1}H }, δ -1 254 p.p.m.}. Further elution with hexane yielded a red band which was collected. Solvent was evaporated *in vacuo*, and the residue recrystallised (0 °C) from diethyl ether–hexane to give red crystals of [Pt₂(CO)₂(η -C₅H₅)₂] (4) (0.05 g, overall yield 48%) [Found: C, 25.4; H, 1.8%; M, 576. Calc. for C₁₂H₁₀O₂Pt₂: C, 25.0; H, 1.8%; M, 576]; ν_{max} (CO) 2 019s, 1 999vs, and 1 959vw cm⁻¹ (hexane) [lit.² 2 020s and 1 996vs cm⁻¹ (cyclo-C₆H₁₂)]. N.m.r.: ¹³C-{¹H} (¹³C enriched at -80 °C in C₆H₅Me), δ 164.1 [CO, ¹J(PtC) \pm 2 446, ²J(PtC) \mp 102]; ¹⁹⁵Pt-{¹H} (at -80 °C in C₆H₅Me), δ -2 140 p.p.m. [J(PtPt) 9 400 \pm 70]. Protonation of Compound (1).—Complex (1) (0.35 g, 0.99 mmol) was dissolved in propionic anhydride (5 cm³) and treated with an excess of HBF₄ [1 cm³ of 40% aqueous HBF₄ in (EtCO)₂CO (7 cm³); ca. 6 mmol]. After 5 min, the mixture was added to diethyl ether (100 cm³) with vigorous stirring. Solvent was decanted from the yellow precipitate which was washed with diethyl ether (2 × 20 cm³), and dried in vacuo to give yellow microcrystals of [Pt(η-C₂H₄)(η²-C₅H₆)(η-C₅H₅)]-[BF₄] (5) (0.41 g, 93%) (Found: C, 32.6; H, 3.4. C₁₂H₁₅BF₄Pt requires C, 32.7; H, 3.4%); m.p. 140 °C (decomp.). N.m.r.: ¹H ([²H₃]nitromethane), δ 6.60 (m, 1 H, CH), 6.46 (m, 1 H, CH), 6.03 [s, 5 H, C₅H₅, J(PtH) 17], 5.79 [m, 1 H, CH, J(PtH) 89], 5.02 [m, 1 H, CH, J(PtH) 78], and 3.52 [m, 6 H, C₂H₄ and CH₂, J(PtH) 53]; ¹³C-(¹H) ([²H₆]acetone), δ 138.8 [C² or C³, J(PtC) 38], 134.0 [C³ or C², J(PtC) 44], 100.5 [C₅H₅, J(PtC) 26], 81.6 [C⁴ or C⁵, J(PtC) 147], 72.2 [C⁵ or C⁴, J(PtC) 239], 51.2 [C₂H₄, J(PtC) 204], and 43.2 p.p.m. [C¹, J(PtC) 29]; 13 C-{ 1 H} (at -75 °C in [2 H₆]acetone), isomer (5a), δ 140.1 [C² or C³, J(PtC) 32], 128.4 [C³ or C², J(PtC) 42], 98.1 [C₅H₅, J(PtC) 20], 75.4 [C⁴ or C⁵, J(PtC) 148], 62.9 [C⁵ or C⁴, J(PtC) 230], 51.3 (C₂H₄), 50.5 (C₂H₄), and 39.7 p.p.m. (C¹); isomer (5b), δ 137.1 [C² or C³, J(PtC) 34], 136.1 [C³ or C², J(PtC) 44], 100.8 [C₅H₅, J(PtC) 27], 82.1 [C⁴ or C⁵, J(PtC) 147], 75.1 [C⁵ or C⁴, J(PtC) 252], 50.1 [C₂H₄, J(PtC) 194], 49.8 [C₂H₄, J(PtC) 182], and 44.1 p.p.m. [C¹, J(PtC) 30]. Reaction of Complex (1) with Diphenylacetylene.—A solution | Table 2. Atomic positional (fractional co-ordinates) parameters for complex (7) with | with estimated standard deviations in parentheses | |--------------------------------------------------------------------------------------|---------------------------------------------------| |--------------------------------------------------------------------------------------|---------------------------------------------------| | Atom | x | y | z | Atom | x | y | z | |-------|--------------|-------------|--------------|--------|-------------|-------------|-----------------| | Pt(1) | 0.321 98(9) | -0.01630(8) | 0.247 73(6) | C(24) | 0.369 5(14) | -0.2349(9) | $-0.085\ 5(10)$ | | Pt(2) | 0.079 10(10) | 0.019 86(8) | 0.248 68(6) | C(25) | 0.250 9(14) | -0.2622(9) | -0.0569(10) | | O(3) | 0.070(2) | -0.1926(2) | 0.205 1(11) | C(26) | 0.198 7(14) | -0.2102(9) | 0.013 6(10) | | C(3) | 0.113(3) | -0.114(2) | 0.197(2) | C(21) | 0.265 0(14) | -0.1309(9) | 0.055 4(10) | | C(1) | 0.194(2) | 0.028(2) | 0.141 9(14) | C(01) | -0.075(3) | 0.139 2(15) | 0.252 6(12) | | C(2) | 0.208(3) | -0.077(2) | 0.130(2) | C(02) | -0.123(3) | 0.044 9(15) | 0.271 8(12) | | C(12) | 0.252 5(15) | 0.198 1(11) | 0.112 5(8) | C(03) | -0.060(3) | 0.012 9(15) | 0.357 7(12) | | C(13) | 0.268 1(15) | 0.276 7(11) | 0.053 1(8) | C(04) | 0.027(3) | 0.087 4(15) | 0.391 5(12) | | C(14) | 0.238 5(15) | 0.265 9(11) | -0.0424(8) | C(05) | 0.017(3) | 0.165 5(15) | 0.326 5(12) | | C(15) | 0.193 4(15) | 0.176 4(11) | -0.0786(8) | C(06) | 0.527(3) | 0.042 0(15) | 0.267 2(13) | | C(16) | 0.177 8(15) | 0.097 9(11) | -0.019 2(8) | C(07) | 0.532(3) | -0.0617(15) | 0.269 9(13) | | C(11) | 0.207 4(15) | 0.108 7(11) | 0.076 4(8) | C(08) | 0.470(3) | -0.0935(15) | 0.348 0(13) | | C(22) | 0.383 6(14) | -0.1036(9) | 0.026 8(10) | C(09) | 0.427(3) | -0.0095(15) | 0.393 5(13) | | C(23) | 0.435 8(14) | -0.155 6(9) | -0.043 7(10) | C(010) | 0.462(3) | 0.074 3(15) | 0.343 6(13) | of (1) (0.25 g, 0.71 mmol) and diphenylacetylene (1.0 g, 5.6 mmol) in toluene (2 cm³) was heated at 70 °C for 16 h. The solvent was removed in vacuo and the residue chromatographed on an alumina column (20 × 2 cm). Elution with toluene-light petroleum (1:1) afforded a yellow band which was collected and rechromatographed. Elution with light petroleum removed unreacted PhC=CPh. Further elution with light petroleum-dichloromethane (9:1) gave a yellow band. Removal of solvent in vacuo, followed by crystallisation of the residue from light petroleum gave yellow crystals of $[Pt(\sigma : \eta^2-C_7H_5Ph_2)(\eta-C_5H_5)]$ (6) (0.1 g, 30%) (Found: C, 57.0; H, 4.1%; M, 503. C₂₄H₂₀Pt requires C, 57.3; H, 4.0% M, 503); m.p. 140 °C. N.m.r.: ¹H, δ 7.11 (s, 10 H, Ph), 6.83 [t, 2 H, H³, $|J(H^3H^2) + J(H^3H^2)|$ 2, $J(PtH^3)$ 7.5], 5.71 [s, 5 H, C_5H_5 , J(PtH) 14], 3.94 [d of t, 2 H, H², $|J(H^2H^3) + J(H^2H^3)|$ 2, $J(H^2H^1)$ 2.8, J(PtH) 31], and 2.30 [t, 1 H, H¹, $J(H^1H^2)$ 2.8, J(PtH) 94]; ¹³C-{¹H}, δ 146.7 [C³, J(PtC) 156], 140.8 [C^a, J(PtC)43], 129.0 [Cb, J(PtC) 40], 127.6 (Cc), 125.9 (Cd), 91.2 [C5H5, J(PtC) 9], 67.9 [C², J(PtC) 120], 63.7 [C⁴, J(PtC) 268], and 2.8 p.p.m. [C¹, J(PtC) 518]; ¹⁹⁵Pt-{¹H} ([²H₆]benzene), δ 748 p.p.m. Reaction of Compound (4) with PhC=CPh.—Freshly sublimed Me₃NO (0.038 g, 0.5 mmol) was added to a stirred solution of (4) (0.144 g, 0.25 mmol) and diphenylacetylene (0.178 g, 1 mmol) in dry acetone (25 cm³). The mixture was stirred at room temperature for 12 h, the colour changing from red to dark green. Volatile material was removed in vacuo, and the residue extracted with hexane. The volume of the solvent was reduced in vacuo to ca. 3 cm³, and the solution cooled (-20 °C), affording yellow-brown crystals of [Pt₂{ μ -C(Ph)-C(Ph)C(O)}(η -C₅H₅)₂] (7) (0.065 g, 36%) (Found: C, 41.6; H, 3.2; C₂₅H₂₀OPt₂ requires C, 41.3; H, 2.8%); $v_{\text{max.}}$ (CO) 1 681vs cm¹ (Nujol). N.m.r.: ¹H, δ 7.6—7.0 (m, 10 H, Ph), 3.93 [s, 5 H, C₅H₅, 2 J(PtH) 19, 3 J(PtH) 2], and 3.85 [s, 5 H, C₅H₅, 2 J(PtH) 1.5]; 3 C-{¹H}, δ 161.7 [CO, 1 J(PtC) 678, ${}^2J(\text{PtC})$ 79], 131.0—127.1 (Ph), 107.7 [*C*Ph, *J*(PtC) 806, *J*(PtC) 601], 92.5 [C_5H_5 , ${}^1J(\text{PtC})$ 81, ${}^2J(\text{PtC})$ 10], 90.7 [C_5H_5 , ${}^1J(\text{PtC})$ 39, ${}^2J(\text{PtC})$ 34], and 72.5 p.p.m. [*C*Ph, ${}^1J(\text{PtC})$ 159, ${}^2J(\text{PtC})$ 35]; ${}^{195}\text{Pt-}\{{}^1H\}$, δ -1 128 and -1 413 p.p.m. [*J*(PtPt) 9 005]. Reaction of Compound (4) with Bu^tC=CBu^t.—In a similar manner to that above, (4) (0.144 g, 0.35 mmol) was treated with Me₃NO (0.5 mmol) and Bu^tC=CBu^t (1 mmol) in acetone (25 cm³). The hexane extract was chromatographed on an alumina packed column. Elution with hexane-diethyl ether (3:1) afforded a brown band. Solvent was removed *in vacuo* and the residue recrystallised (0 °C) from hexane-diethyl ether to give yellow-brown *crystals* of [Pt₂(μ -Bu^tC₂Bu^t)(η -C₅H₅)₂] (8) (0.064 g, 39%) (Found: C, 36.8; H, 4.4%; M, 658. C₂₀H₂₈Pt₂ requires C, 36.5; H, 4.3%; M, 658). N.m.r.: ¹H, δ 5.73 [s, 10 H, C₅H₅, J(PtH) 18] and 1.14 [s, 18 H, Bu^t, J(PtH) 2.5]; ¹³C-{¹H}, δ 89.9 [CBu^t, J(PtC) 476], 88.5 [C₅H₅, J(PtC) 31], 32.5 [Bu^t, J(PtC) 31], and 27.9 p.p.m. (CMe₃); ¹⁹⁵Pt-{¹H}, δ -1 745 p.p.m. Crystal Structure Determination.—Crystals of (7) were grown from dichloromethane. Preliminary investigations showed that a reduction in the temperature of the sample caused a phase change, and accompanying degradation of the crystals. Diffracted intensities were, therefore, measured at 298 K on a Nicolet $P2_1$ four-circle diffractometer in the range $2.9 \le 20 \le 50^\circ$, according to previously described methods. ^{27,28} Of the total 1 582 reflections, 1 492 had $I \ge 2\sigma(I)$ and only these were used in the solution and refinement of the structure, after the data had been corrected for Lorentz, polarisation, and X-ray absorption effects. The latter were estimated by an empirical method, since the irregular morphology of the sample (mean radius 0.07 mm) defied accurate indexing and measurement. Crystal data. $C_{25}H_{20}OPt_2$, M = 726.6, Monoclinic, a = 10.463(4), b = 13.678(7), c = 14.457(8) Å, $\beta = 95.36(2)^{\circ}$, Z = 4, $D_c = 2.35$ g cm⁻³, $U = 2\,060(1)$ Å³, $F(000) = 1\,336$, space group $P2_1/n$ (no. 14), Mo- K_{α} X-radiation (graphite monochromator), $\bar{\lambda} = 0.710\,69$ Å, $\mu(Mo-K_{\alpha}) = 130.7$ cm⁻¹. Structure solution and refinement for (7). The structure was solved and all non-hydrogen atoms located by conventional heavy-atom and difference-Fourier methods. Hydrogen atoms were included at calculated positions (C-H 0.96 Å), and anisotropic thermal parameters were employed for the Pt and C(1)-O(3) chain of atoms only. Refinement by blocked-cascade least squares led to R 0.045 (R' 0.054) with a weighting scheme of the form $w = [\sigma^2(F_o) + 0.0009|F_o|^2]^{-1}$ giving a reasonable weight analysis. The final electron-density difference synthesis showed disturbing residual peaks ca. 3 e Å⁻³, in the close neighbourhood of the metal atoms doubtless due to the inadequacy of the absorption correction. Scattering factors were from ref. 29. All computations were carried out on an Eclipse S230 (Data General) computer with the SHELXTL system of programs.³⁰ Atom co-ordinates are listed in Table 2. ### Acknowledgements We thank the S.E.R.C. for support and N.A.T.O. for a post-doctoral fellowship (to B. H.). ### References - 1 F. R. Hartley, in 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon Press, Oxford, 1982, vol. 6, p. 471. - E. O. Fischer, H. Schuster-Woldan, and K. Bittler, Z. Naturforsch., Teil B, 1963, 18, 429. - 3 E. O. Fischer and E. Schuster-Woldan, Chem. Ber., 1967, 100, 705. - 4 K. K. Cheung, R. J. Cross, K. P. Forrest, R. Wardle, and M. Mercer, *Chem. Commun.*, 1971, 875. - 5 R. S. P. Coutts and P. C. Wailes, J. Organomet. Chem., 1970, 25, 117. - 6 J. Chatt and M. L. Searle, Inorg. Synth., 1957, 5, 210. - 7 H. S. Gutowsky and C. H. Holm, J. Chem. Phys., 1956, 25, 1228. - 8 R. Cramer, J. B. Kline, and J. D. Roberts, J. Am. Chem. Soc., 1969, 91, 2519. - 9 N. M. Boag, P. L. Goggin, R. J. Goodfellow, and I. R. Herbert, J. Chem. Soc., Dalton Trans., 1983, 1101. - 10 N. M. Sergeyev, G. I. Avramenko, and Yu. A. Ustynyuk, J. Organomet. Chem., 1970, 22, 63. - 11 J. Browning, P. L. Goggin, R. J. Goodfellow, N. W. Hurst, L. G. Mallinson, and M. Murray, J. Chem. Soc., Dalton Trans., 1978, 872 - 12 K. Hildenbrand and H. Dreeskamp, Z. Phys. Chem., 1970, 69, 171. - 13 L. Lunazzi, M. Tiecco, C. A. Boicelli, and F. Taddei, J. Mol. Spectrosc., 1970, 35, 190. - 14 P. L. Goggin, R. J. Goodfellow, S. R. Haddock, B. F. Taylor, and I. R. H. Marshall, J. Chem. Soc. Dalton Trans., 1976, 459. - 15 H. P. Fritz and C. G. Kreiter, *Chem. Ber.*, 1963, 96, 2008. 16 M. Dubeck, *J. Am. Chem. Soc.*, 1960, 82, 6193; L. F. Dahl and C. H. Wei, *Inorg. Chem.*, 1963, 2, 713. - 17 D. W. McBride, E. Dudek, and F. G. A. Stone, J. Chem. Soc., 1964, 1752. - 18 A. Albinati, Inorg. Chim. Acta, 1977, 22, L31. - 19 M. Green, J. A. K. Howard, M. Murray, J. L. Spencer, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1977, 1509. - 20 J. C. Jeffery, I. Moore, M. Murray, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1982, 1741. - 21 M. Green, J. A. K. Howard, A. Laguna, L. E. Smart, J. L. Spencer, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1977, 278. - 22 G. K. Barker, M. Green, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, *J. Chem. Soc.*, *Dalton Trans.*, 1978, 1839; R. Mason, G. B. Robertson, and P. O. Whimp, *J. Chem. Soc. A*, 1970, 535; M. R. Truter and R. C. Watling, *ibid.*, 1967, 1955. - 23 W. E. Carroll, M. Green, J. A. K. Howard, M. Pfeffer, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1978, 1472. - 24 S. R. Finnimore, S. A. R. Knox, and G. E. Taylor, J. Chem. Soc., Chem. Commun., 1980, 411. - 25 A. F. Dyke, S. A. R. Knox, P. J. Naish, and G. E. Taylor, J. Chem. Soc., Dalton Trans., 1982, 1297. - 26 P. W. Jolly and G. Wilke, in 'The Organic Chemistry of Nickel,' Academic Press, 1974, vol. 1, p. 312. - 27 A. Modinos and P. Woodward, J. Chem. Soc., Dalton Trans., 1974, 2065. - 28 R. Goddard, S. D. Killops, S. A. R. Knox, and P. Woodward, J. Chem. Soc., Dalton Trans., 1978, 1255. - 29 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1975, vol. 4. - 30 G. M. Sheldrick, SHELXTL programs for use with the Nicolet P3m X-ray system, Cambridge, 1976. Received 18th March 1983; Paper 3/429